Hyperbaric Oxygen Therapy (HBOT): A Novel Treatment for Chronic Pain?

Raymond M. Quock, Ph.D.
Honors College Distinguished Professor
Psychology Department
Washington State University
Pullman, WA

POPF Midwest PAIN Expo
These Materials are Copywrite and Protected by Author
Лечение комплексного регионарного болевого синдрома

Н.В. Тутер, А.Б. Данилов, Л.В. Полякова

Treatment of complex regional pain syndrome

N.V. Tuter, A.B. Danilov, L.V. Polyakova

Кафедра нервных болезней факультета послевузовского профессионального образования, межклиническое отделение гипербарической оксигенации Московской медицинской академии им. И.М. Сеченова

35 patients with complex regional pain syndrome (CRPS) were treated by hyperbaric oxygenation (HBO) and caffetin preparation. A significant decrease of pain was observed in all the patients after the treatment course. Intensity of pain was diminished according to visual analogus scale. Meanwhile considerable regression of autonomic disorders and weakening of anxious and depressive manifestations was noted too. The tendency to normalization of evoked skin potentials was also found. Some elevation of the threshold of nociceptive reflex was conditioned by displacement toward general increase of antinociception after the treatment. Effect of HBO therapy persisted during 6 months in 87% of the patients. Efficiency of caffetin was restricted by the time of its administration. The conclusion was made about possibility of successful treatment of CRPS patients by both methods.
Effectiveness of Hyperbaric Oxygen Therapy in the Treatment of Complex Regional Pain Syndrome

MZ Kiralp¹, § Yildiz², D Vural¹, İ Keskin¹, H Ay² and H Dursun¹

¹Department of Physical Therapy and Rehabilitation and ²Department of Underwater and Hyperbaric Medicine, Gülhane Military Medical Academy, Haydarpasa Training Hospital, Istanbul, Turkey

In this double-blind, randomized, placebo-controlled study we aimed to assess the effectiveness of hyperbaric oxygen (HBO) therapy for treating patients with complex regional pain syndrome (CRPS). Of the 71 patients, 37 were allocated to the HBO group and 34 to the control (normal air) group. Both groups received 15 therapy sessions in a hyperbaric chamber. Pain, oedema and range of motion (ROM) of the wrist were evaluated before treatment, after the 15th treatment session and on day 45. In the HBO group there was a significant decrease in pain and oedema and a significant increase in the ROM of the wrist. When we compared the two groups, the HBO group had significantly better results with the exception of wrist extension. In conclusion, HBO is an effective and well-tolerated method for decreasing pain and oedema and increasing the ROM in patients with CRPS.
Kiralp et al., Journal of International Medical Research 32:258-262, 2004

VAS pain
wrist flexion
wrist edema

↓ VAS pain
↑ wrist flexion
no Δ wrist edema

MTWTFTSSMTWTFTFSSTMTWTFSS

↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑

45 days

↓ VAS pain
↑ wrist flexion
no Δ wrist edema

M

↑ = 90 MIN HBOT @ 2.4 ATA

POPF Midwest PAIN Expo
These Materials are Copywrite and Protected by Author
Case Report

Chronic Regional Pain Syndrome After Subtalar Arthrodesis Is Not Prevented by Early Hyperbaric Oxygen

Simon TB Williams, MBBCh¹, Anthony Davies, FRCA², and Phil Bryson, MBBS¹

From: 'Diving Diseases Research Centre, Plymouth, UK; and 'Derriford Hospital, Plymouth, UK.

Dr. Williams and Dr. Bryson are with the Diving Diseases Research Center, Tamar Science Park, Plymouth, UK. Dr. Davies is a Pain Management Specialist with the Department of Anaesthesia, Derriford Hospital, Plymouth, UK.

Address correspondence: Simon TB Williams, MBBCh Diving Diseases Research Centre Tamar Science Park Research Way Plymouth, Devon PL6 8BU United Kingdom E-mail: stbwilliams@hotmail.com

Disclaimer: There was no external funding in the preparation of this manuscript. Conflict of interest: None.

Manuscript received: 02/09/2008 Revised manuscript received: 03/17/2009 Accepted for publication: 04/09/2009

Subtalar arthrodesis was performed on a 48-year-old, non-insulin-dependent diabetic with a history of chronic ankle instability and lateral ankle pain. In the early post-operative period he presented as an emergency with an infection at the operative site. This was treated with 2 returns to the operating theatre for washout and debridement. His wounds were left open and at 3 weeks after emergency admission he was referred for adjunctive hyperbaric oxygen (HBO) therapy to aid healing by secondary intention. He received a total of 19 hyperbaric sessions, at a pressure of 2.2 ATA, one treatment per day for 5 days a week.

Shortly after commencing HBO therapy his ankle became increasingly painful, despite the introduction of analgesia. By 7 weeks after emergency admission his wounds had virtually healed but hyperesthesia persisted over the dorsum of the foot. A computerized tomography scan at 5½ months post-operatively showed satisfactory joint fusion and revealed no evidence of infection. Symptoms and signs at this time were compatible with a diagnosis of chronic regional pain syndrome (CRPS).

There is published evidence to suggest that HBO therapy may be a useful modality in the treatment of established CRPS. Here, we seek to publicize a case in which early treatment with HBO for another indication did not prevent the simultaneous development of CRPS Type 1.

Key words: Subtalar arthrodesis, hyperbaric oxygenation, chronic regional pain syndrome

Free full manuscript: www.painphysicianjournal.com
SUBTALAR ARTHRODESIS OF THE FOOT

1 week

EMERGENCY ROOM VISIT FOR PAIN & INFECTION

3 weeks

BEGIN ADJUNCTIVE HBOT TO AID HEALING

MTWTFSSMTWTFSS

Continuing pain neuropathic pain

MTWTFSSMTWTFSS

MTWTFSSMTWTFSS

↑ = 2x 45 MIN HBOT @ 2.2 ATA WITH 10 MIN INTERVAL BETWEEN SESSIONS

2 weeks

HYPERESTHESIA

4 weeks

WORSENED PAIN ALLODYnia

POPF Midwest PAIN Expo

These Materials are Copywrite and Protected by Author
HBOT and Complex Regional Pain Syndrome (CRPS)
 • Three reports from the clinical literature

HBOT
 • What is it?
 • FDA-approved HBOT indications
 • Main effects of HBOT
 • Off-label uses of HBOT

HBOT Basic Research Results
 • Mechanism of pain relief may originate in the brain
 • Mechanism of pain relief may involve the opioid system
HBOT is the clinical application of 100% oxygen at atmospheric pressures higher than sea level for limited periods of time (60–90 min) to achieve therapeutic outcomes.

HBOT requires the use of a hard shell pressure vessel (hyperbaric chamber).
Hyperbaric Chambers

POPF Midwest PAIN Expo
These Materials are Copywrite and Protected by Author
FDA-Approved HBOT Indications

- Air or gas embolism
- Carbon monoxide poisoning
- Gas gangrene
- Acute traumatic ischemia
- Decompression sickness
- Arterial insufficiencies
- Severe anemia
- Intracranial abscess
- Necrotizing soft tissue infections
- Refractory osteomyelitis
- Delayed radiation injury
- Compromised skin grafts and flaps
- Acute thermal burn injury
- Idiopathic sudden sensorineural hearing loss
Mechanical Effect of Increased Pressure

- Any free gas trapped in the body will decrease in volume as pressure increases (Boyle's Law).
- Reduction in bubble size may allow it to pass through the circulation.
- This effect is useful in the management of gas embolism and decompression sickness.

Mass Action of Gases

- Flooding the body with oxygen forces the rapid elimination of other toxic gases such as carbon monoxide.
- The mechanic effect of increased pressure further accelerates the elimination process.

POPF Midwest PAIN Expo
These Materials are Copywrite and Protected by Author
Vasoconstriction

- Vasoconstriction can result in reduction of edema.
- Even with reduced blood flow, enough extra oxygen is carried by the blood so a net increase in tissue oxygen delivery occurs with HBOT.
- This effect is therapeutic in crush injury/compartment syndrome and thermal burns.
Hyperoxygenation

- HBOT physically dissolves extra oxygen into the plasma (Henry's Law).
- This effect increases delivery of oxygen to ischemic or underperfused tissues, which can limit ischemic damage, inflammation and cell death.
- The additional oxygen helps the ischemic tissue meet the increased metabolic needs of the healing process.
Antibacterial Effect

- Anaerobic bacteria do not flourish in the presence of oxygen.
- Many of the body's bacterial defense mechanisms are dependent on oxygen.
- HBOT slows the growth of anaerobic bacteria, allow the body’s bacterial defense mechanisms to be reactivated, and combat clinical infections such as gas gangrene.
There are clinical reports of HBO$_2$-induced therapeutic effects in the following conditions:

- Traumatic brain injury (TBI)
- Persistent post-concussion syndrome
- Cerebral palsy
- Multiple sclerosis
- Chronic fatigue syndrome
- Stroke
- Autism
- Cancer
There are clinical reports of HBO$_2$–induced relief of pain in the following conditions:

- Complex regional pain syndrome (reflex sympathetic dystrophy syndrome)
- Fibromyalgia
- Trigeminal neuralgia
- Migraine and cluster headache
- Rheumatoid arthritis
- Chronic osteomyelitis
Research Report

Involvement of brain opioid receptors in the anti-allodynic effect of hyperbaric oxygen in rats with sciatic nerve crush-induced neuropathic pain

Carlee R. Gibbons¹, Shulin Liu²,³, Yangmiao Zhang⁴, Casey L. Sayre⁴, Briana R. Leitch⁴, Sarah B. Moehlmann⁵, Donald Y. Shirachi⁶, Raymond M. Quack⁵,³

¹Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Pullman, WA, USA
²Translational Addiction Research Center, Washington State University, Pullman, WA, USA
³Department of Anesthesiology, Second Military Medical University, Shanghai, China
⁴Faculty of Pharmacy, University of Manitoba, Winnipeg, MB, Canada
⁵Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA, USA

ABSTRACT

Earlier research has demonstrated that hyperbaric oxygen (HBO₂) can produce an antinociceptive effect in models of acute pain. Recent studies have revealed that HBO₂ can produce pain relief in animal models of chronic pain as well. The purpose of the present investigation was to assess whether HBO₂ treatment might suppress allodynia in rats with neuropathic pain and whether this effect might be blocked by the opioid antagonist naloxone (NTX). Male Sprague-Dawley rats were subjected to a sciatic nerve crush under anesthesia and mechanical thresholds were assessed using an electronic von Frey anesthesiometer. The time course of the HBO₂-induced anti-allodynic effect in different treatment groups was plotted, and the area-under-the-curve (AUC) was determined for each group. Seven days after the nerve crush procedure, rats were treated with HBO₂ at 3.5 atm absolute (ATA) for 60 min and exhibited an anti-allodynic effect, compared to nerve crush-only control rats. Twenty-four hours before HBO₂ treatment, another group of rats was implanted with Alzet® osmotic minipumps that continuously released NTX into the lateral cerebral ventricle for 7 days. These NTX-infused, HBO₂-treated rats exhibited an allodynic response comparable to that exhibited by rats receiving nerve crush only. Analysis of the AUC data showed that HBO₂ significantly reduced the nerve crush-induced allodynia; this anti-allodynic effect of HBO₂ was reversed by NTX. These results implicate opioid receptors in the pain relief induced by HBO₂.

© 2013 Elsevier B.V. All rights reserved.
Summary

1. HBOT is a medical treatment that delivers 100% oxygen under higher-than-normal atmospheric pressure.
2. There are fourteen clinical indications for HBOT in the U.S. that are approved by the AMA and the FDA.
3. There are several “off-label” indications that have been shown to be responsive to HBOT, including several conditions of chronic pain.
4. There are clinical reports that HBOT can produce pain relief in complex regional pain syndrome.
5. Basic science research indicates that HBOT-induced pain relief may originate from an action in the brain and possibly involve the endogenous opioid system.
Acknowledgments

Yusuke Ohgami, Ph.D.
Eunhee Chung, Ph.D.
David W. Koh, Ph.D.
Yangmiao Zhang, Ph.D.
Shulin Liu, Ph.D.

Abigail Brewer
Jordan Nelson
Carlee Gibbons
Lindsay Quock
Lisa Zelinski

Donald Y. Shirachi, Ph.D.

Amber V. Buhler, Ph.D.

NIH grant GM-77153
NIH grant AT-007222

POPF Midwest PAIN Expo
These Materials are Copywrite and Protected by Author