University at Buffalo The State University of New York

TNFα: Inflammatory Mediator, Neuromodulator and Therapeutic Target

Tracey A. Ignatowski, Ph.D. Research Associate Professor Department of Pathology & Anatomical Sciences

Disclosure Information

Tracey A. Ignatowski, Ph.D.

No financial interest that could be considered as conflict of interest.

Forging the Future of Nano-medicine

Tumor Necrosis Factor-α

Pro-inflammatory mediator:

- Initiation and coordination of inflammation
- Lethal tissue injury
- Cachexia (chronic starvation state)

Neuromodulator:

- Influences emotional behavior
- Neuroprotection
- Regulation of neurotransmitter release

Commonalities of Disorders

ANATOMY:

Anterior Cingulate Cortex **Prefrontal Cortex Hippocampus** Amygdala Thalamus **MOLECULAR DETERMINANTS: Dysregulated Neurotransmitters** Serotonin Dopamine Norepinephrine Acetylcholine Glutamate GABA **Altered Cytokine** Profile Increase proinflammatory cytokines (TNF, IL-1, IL-6) **Decrease antiinflammatory** cytokines (IL-4, IL-10)

POPF Midwest PAIN Expo These Materials are Copywrite and Protected by Author

DEPRESSION

Fasick V, Spengler RN, Samanakan S, Nader ND, Ignatowski TA. The hippocampus and TNF: Common links between chronic pain and depression. Neurosci Biobehav Rev 53:139-159, 2015

Hippocampus

Î TNF

INFLAMMATION

PAIN

Pathologic Disorders

Neuropathic Pain

- Chronic Constriction Injury (CCI)
- Diabetic Neuropathy (STZ)

Depressive Behavior

- Forced Swim Test (FST)
- Novelty-induced Hypophagia (NIH)

Brain-associated TNF

Contributes to Development of Chronic Pain

Role in Depressive Behavior

Hippocampus

- Primary brain region affected during numerous neurological disorders, resulting in synaptic defects and atrophy
- Effects reversed by antidepressant drugs
 - Induces hippocampal neurogenesis
- Express receptors for TNF

Neuromodulator

Role in Depressive Behavior

Role in Neuropathic Pain POPF Midwest PAIN Expo

These Materials are Copywrite and Protected by Author

Methods

Brain TNF Levels

- Brain regions taken
 - Hippocampus
 - Locus Coeruleus
 - Parietal Cortex
 - Medial Frontal Cortex
 - Caudate Nucleus
 - Thalamus
 - Periaqueductal gray

- Weighed and processed for assay TNF WEHI-13var bioassay These Materials are Copywrite and Protected by Author
- Immunoperoxidase staining of tissue

Bioactive Levels of TNF

POPF Midwest PAIN Expo

These Materials are Copywrite and Protected by Author

Ignatowski TA, Spengler RN. Tumor necrosis factor-α: Presynaptic sensitivity is modified after antidepressant drug administration. **Brain Res** 665:293-299, 1994.

Immunoperoxidase Staining for TNF

Locus coeruleus

Immunohistochemistry (25X)

Hippocampus

POPF Midwest PAIN Expo

These Materials are Copywrite and Protected by Author

Ignatowski TA, Noble B, Gorfien J, Wright JR, Spengler RN. Neuronal-associated tumor necrosis factor (TNFα): Its role in noradrenergic functioning and modification of its expression following antidepressant administration. J Neuroimmunol 79:84-90, 1997.

TNF

Neuromodulator

POPF Midwest PAIN Expo These Materials are Copywrite and Protected by Author Hippo NE NE

NE

Field Stimulation and Superfusion of Hippocampal Brain Slices

TNF Concentration-Effect Curves

POPF Midwest PAIN Expo These Materials are Copywrite and Protected by Author

TNF Concentration-Effect Curves

POPF Midwest PAIN Expo These Materials are Copywrite and Protected by Author

Neuromodulator

Role in Depressive Behavior

Role in Neuropathic Pain

Forced Swim Test

- Used for antidepressant effectiveness
- Stressor behavioral despair/learned helplessness
 - 15 min pre-test swim

5 min test swim

FST-induced Immobility

POPF Midwest PAIN Expo

These Materials are Copywrite and Protected by Author

FST-induced TNF Levels

Intracerebroventricular Microinfusion

- Microinfusion of compound into right lateral cerebral ventricle for 14 days
- Compounds Infused: Artificial Cerebral Spinal Fluid (aCSF) polyclonal TNFα Antibody (pTNF-Ab) POPF Midwest PAIN Expo These Materials are Copywrite and Protected by Author

Reynolds JL, Ignatowski TA, Sud R, Spengler RN. Brain-derived tumor necrosis factor-α and its involvement in noradrenergic neuron functioning involved in the mechanism of action of an antidepressant. **J Pharmacol Exper Ther** 310:1216-1225, 2004.

FST-induced Immobility

Reynolds JL, Ignatowski TA, Sud R, Spengler RN. Brain-derived tumor necrosis factor-α and its involvement in noradrenergic neuron functioning involved in the mechanism of action of an antidepressant. **J Pharmacol Exper Ther** 310:1216-1225, 2004.

Intracerebroventricular Microinfusion

 Microinfusion of compound into right lateral cerebral ventricle for 14 days

 Compounds Infused: Artificial Cerebral Spinal Fluid (aCSF) rrTNFα (1000 ng/24 hr, 14 days) POPF Midwest PAIN Expo

These Materials are Copywrite and Protected by Author

Field-Stimulated ³H-NE Release

Reynolds JL, Ignatowski TA, Sud R, Spengler RN. Brain-derived tumor necrosis factor-α and its involvement in noradrenergic neuron functioning involved in the mechanism of action of an antidepressant. **J Pharmacol Exper Ther** 310:1216-1225, 2004.

FST-induced Immobility

These Materials are Copywrite and Protected by Author Reynolds JL, Ignatowski TA, Sud R, Spengler RN. Brain-derived tumor necrosis factor-α and its involvement in noradrenergic neuron functioning involved in the mechanism of action of an antidepressant. J Pharmacol Exper Ther 310:1216-1225, 2004.

Conclusions

- Increase in central TNF induces depressive behavior.
- Blocking central TNF activity induces antidepressant-like behavior.
- Antidepressant drug administration reduces TNF expression.

Hypothesis

Alternative Agents – affect TNF systemically Antidepressant Effects?

Drugs that decrease stress-induced TNF levels in the brain will prevent depressive-like behaviors.

Methods

- Male Sprague-Dawley rats (150-175g)
 - Saline
 - Desipramine (10 mg/kg)
 - Zimelidine (3 mg/kg)
 - Wellbutrin (10 mg/kg)
 - Ketamine (5 mg/kg)
 - Ketamine (10 mg/kg)

Results FST Bioactive TNF

[TNF] Brain Tissue Homogenates

RESULTS

Bioactive TNF

These Materials are Copywrite and Protected by Author

Conclusion: FST Studies

- Novel agent (ketamine)
 - Decrease immobility in FST
 - Decrease TNF levels in serum, hippocampus and locus coeruleus
- Ketamine = fast-acting

Suggests decreasing TNF levels mediates antidepressant activity

Novelty Induced Hypophagia (NIH)

- Trained 5 days
- Chronic administration (14 days; i.p.)
- Home cage test
- Novel cage test

NIH-induced TNF Levels

Results – NIH (acute)LatencyConsumption

Conclusions: NIH Test (acute)

- Well-known antidepressants (desipramine, wellbutrin, zimelidine) do not work following acute administration.
- Ketamine shows decrease in latency.

Ketamine is effective at decreasing depressive behavior following acute administration.

RESULTS – NIH (CHRONIC)LatencyConsumption

These Materials are Copywrite and Protected by Author

CONCLUSIONS: NIH TEST (CHRONIC)

- Zimelidine, desipramine, and wellbutrin
 - Decreased latency (not zimelidine)
 - Increased consumption (not desipramine)
 - Decreased TNF in serum, hippocampus and locus coeruleus

Decrease in TNF is associated with antidepressant activity

Neuromodulator

Role in Depressive Behavior

Role in Neuropathic Pain

Neuropathic Pain

- Pain resulting from injury to the nervous system
- Central component
- Characteristic features: Hyperalgesia

Allodynia

Ignatowski TA, Covey WC, Knight PR, Severin CM, Nickola TJ, Spengler RN. Brain-derived TNFα mediates neuropathic pain. **Brain Res** 841:70-77, 1999.

Covey WC, Ignatowski TA, Knight PR, Spengler RN. Brain-derived TNFα: Involvement in neuroplastic changes implicated in the conscious perception of persistent pain. **Brain Res** 859:113-122, 2000.

Is a molecular imbalance in TNF levels sufficient and necessary to produce neuropathic pain in the CCI model?

Is a molecular imbalance in TNF levels sufficient to produce neuropathic pain in the CCI model?

GNR-pDNA(TNF)-RFP

These Materials are Copywrite and Protected by Author

Paw Algesia Apparatus

Paw Withdrawal Latency

Right Hind Paw

Left Hind Paw

hese Materials are Copywrite and Protected by Author

Martuscello RT, Spengler RN, Bonoiu AC, Davidson B, Helinški J, Ding H, Mahajan S, Kumar R, Bergey EJ, Knight PR, Prasad PN, Ignatowski TA. Increasing TNF levels solely in the rat hippocampus produces persistent pain-like symptoms. PAIN 153:1871-1882, 2012

These Materials are Copywrite and Protected by Author

Martuscello RT, Spengler RN, Bonoiu AC, Davidson B, Helinski J, Ding H, Mahajan S, Kumar R, Bergey EJ, Knight PR, Prasad PN, Ignatowski TA. Increasing TNF levels solely in the rat hippocampus produces persistent pain-like symptoms. PAIN 153:1871-1882, 2012.

Conclusions

Sustained increases in the levels of TNF in the hippocampus induce chronic pain

Is a molecular imbalance in TNF levels necessary to produce neuropathic pain in the CCI model?

TNF siRNA^{Cy3}

These Materials are Copywrite and Protected by Author

CCI Neuropathic Pain Model

Ignatowski TA, Covey WC, Knight PR, Severin CM, Nickola TJ, Spengler RN. Brain-derived TNFα mediates neuropathic pain. **Brain Res** 841:70-77, 1999.

Covey WC, Ignatowski TA, Knight PR, Spengler RN. Brain-derived TNFa: Involvement in neuroplastic changes implicated in the conscious perception of persistent pain. **Brain Res** 859:113-122, 2000.

Covey WC, Ignatowski TA, Renauld AE, Knight PR, Nader ND, Spengler RN. Expression of neuron-associated TNF α in the brain is increased during persistent pain. **Reg Anesth Pain Med** 27:357-366, 2002.

Ignatowski TA, Reynolds JL, Sud R, Knight PR, Spengler RN. The dissipation of neuropathic pain paradoxically involves the presence of tumor necrosis factor-α (TNF). **Neuropharmacology** 48:448-460, 2005.

These Materials are Copywrite and Protected by Author Gerard E, Spengler RN, Bonoiu AC, Davidson BA, Mahajan SD, Ding H, Kumar R, Prasad PN, Knight PR, Ignatowski TA. Chronic pain is relieved by nanomedicine-mediated decrease of hippocampal TNF. **PAIN** 156:1320-1333, 2015.

Nanoplex Treatment Paradigm

Conclusions

- Rats undergoing neuropathic pain and displaying characteristic chronic pain symptoms that received a single hippocampal microinjection of TNF nanoplexes showed:
 - Complete alleviation of pain (thermal hyperalgesia).
 - Transient alleviation of pain (mechanical allodynia).
- CCI-induced enhanced levels of TNF (bioactivity) within the contralateral hippocampus were reduced to control levels following TNF nanoplex microinjection.

Decreasing elevated levels of TNF specifically in the brain may provide effective relief of chronic pain.

OVERALL CONCLUSION

Hippocampus

DEPRESSION

ÎTNF

PAIN

POPF Midwest PAIN Expo These Materials are Copywrite and Protected by Author Fasick V, et al., Neurosci Biobehav Rev 53: 139-159, 2015

Neuropathic Pain: CRPS

NSAIDS Morphine derivatives Tricyclic Antidepressants Anti-convulsants

Alternative Therapies

NMDA Antagonists Electrical Stimulation HBOT Anti-TNF Molecules POPF Midwest PAIN Expo These Materials are Copywrite and Protected by Author

Ongoing Studies & Future Directions

- TNFR; Transcription factors involved in TNF signaling pathway
- Antidepressant/antinociceptive mechanism of action
 - Atypical agents/alternative therapies
 - Affective component of analgesics
 - CPP
- Systemic nanoplex administration
 - intravenous; intrathecal; perispinal

TNF in CRPS

Ignatowski TA, Samankan S, and Spengler RN. Molecular Pathophysiology and the Role of TNF in the Neuro-inflammatory Reflex. In: CRPS: Past, Present & Future; Nader, N.D. and Visnjevac, O. (Eds). NOVA Science Publishers, Inc., Hauppauge, New York 2015. *In press*.

Acknowledgements

Collaborators

Robert N. Spengler, PhD Paul R. Knight, MD, PhD Bruce A. Davidson, PhD Paras N. Prasad, PhD Adela Bonoiu, PhD Supriya D. Mahajan, PhD

Funding SupportNIH 5R01NS41352 (RNS, PRK, TAI)NARSAD (TAI)United Spinal Assoc (TAI)UB-MDRF (A. Re; E. Clonan)UB-CURCA (A. Alnaji)Dept. PASPOPF Midwest P

Students Reeteka Sud, PhD Victoria Fasick, MA, DO Regina Martuscello, MA, PhD Elizabeth Gerard, MA Ashley Re, MA Ellyce Clonan, BS, MA Abdel Rahman Alnaji, BS

Technical Assistance

Annette Featherstone, HT ASCP Shabnam Samankan, MD Wade Sigurdson, PhD